首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8577篇
  免费   1250篇
  国内免费   2428篇
化学   10943篇
晶体学   42篇
力学   58篇
综合类   88篇
数学   33篇
物理学   1091篇
  2024年   8篇
  2023年   135篇
  2022年   189篇
  2021年   343篇
  2020年   485篇
  2019年   384篇
  2018年   361篇
  2017年   334篇
  2016年   454篇
  2015年   461篇
  2014年   567篇
  2013年   928篇
  2012年   688篇
  2011年   591篇
  2010年   518篇
  2009年   507篇
  2008年   583篇
  2007年   601篇
  2006年   541篇
  2005年   483篇
  2004年   465篇
  2003年   497篇
  2002年   297篇
  2001年   261篇
  2000年   253篇
  1999年   212篇
  1998年   151篇
  1997年   158篇
  1996年   142篇
  1995年   140篇
  1994年   111篇
  1993年   86篇
  1992年   83篇
  1991年   54篇
  1990年   55篇
  1989年   35篇
  1988年   27篇
  1987年   12篇
  1986年   15篇
  1985年   14篇
  1984年   8篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1969年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Pressure oxidation leaching behavior of chalcopyrite in sulfuric acid solution from 110 °C to 150 °C were investigated by in-situ electrochemical methods. Leaching experiments under saturated vapor pressure conditions were used to simulate the anoxic environment that may be encountered in industrial applications. Scanning electron microscope and X-ray photoelectron spectroscopy were used to characterize the morphology and the chemical status of chalcopyrite surface. Results show that the copper extraction was increased with the increase of leaching temperature. Under the optimal leaching conditions under saturated vapor pressure, the copper and iron extraction are 8.3% and 29.8%, respectively. When the temperature increased from 110 °C to 150 °C, the self-corrosion potential and electrochemical reaction resistance firstly increased and then decreased. In contrast, the resistance of the passive film was always increased with the increase of temperature. The electrochemical study results indicated that the increase in temperature affected the oxidation of chalcopyrite by altering the kinetics of the cathodic reaction and the anodic passivation. Both the self-corrosion current density (icorr) and rate constant were affected by the reduction of Fe(III). The XPS results show that elemental sulfur and H3O(Fe3(SO4)2(OH)6) were the main leaching solid products. The formation of H3O(Fe3(SO4)2(OH)6) not only caused a decrease in cathodic reaction kinetics, but also increased the resistance of mass transfer process. Due to the faster release of iron, copper-rich sulphides were formed, which mixed with the elemental sulfur and/or H3O(Fe3(SO4)2(OH)6) led to coverage of the chalcopyrite surface.  相似文献   
2.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
3.
4.
Two nickel complexes, [Ni(tpen)](ClO4)2.0.5CH3COCH3 ( 1 ) and [Ni(tpbn)](ClO4)2 ( 2 ), of tetrapyridyl ligands N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,2-ethanediamine (tpen) and N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,4-butanediamine (tpbn) were prepared and their catalysis for water oxidation reaction (WOR) studied. In 0.1 M phosphate buffer solution (PBS) of pH 8.0, complex 1 is a homogeneous molecular catalyst with an overpotential of ~440 mV and a Faradaic efficiency of 89%. At pH ≥ 9.0, complex 1 degraded gradually during the catalytic process and formed NiOx composite (nickel oxide with general formula NixOyHz) active for WOR. In contrast, complex 2 deteriorated under measured conditions (pH 8.0–12.0) and formed NiOx composite active for WOR. The NiOx composite derived from 1 in 0.1 M PBS at pH 11.0 showed an activity with an overpotential of ~500 mV, a Tafel slope of ~90 mV/decade and a Faradaic efficiency of 97%. Mechanisms were proposed for water oxidation catalyzed by 1 and 2 . This work revealed that the catalytic activity of the nickel complexes was related to the flexibility of the tetrapyridyl ligands and the adaptability of the coordination sphere of the nickel(II) center.  相似文献   
5.
以有序介孔碳(OMC)球为离子-电子转换层,制备了固态氯离子选择性电极,构建了基于离子敏感的场效应晶体管(ISFET)的手持式传感系统,用于检测人体血清中的氯离子。优化了OMC前驱体的碳化温度,探究了OMC形貌结构对电极传感性能的影响;电极柔性化制备后考察了其在手持系统中对氯离子的检测效果。结果表明,最优条件下,电极在5.12×10^-4~1.02 mol/L的浓度范围呈现线性响应,响应斜率为60 mV/decade。该柔性电极在手持传感系统中展现出高灵敏度和重现性,可用于人体血清样品中氯离子的检测,其回收率为96.3%~104.9%。  相似文献   
6.
For the first time, a novel, straightforward and inexpensive route for immobilization of metals in Schiff base complex form is reported applying 2,4‐toluenediisocyanate as a precursor of primary amine group. A nickel(II) Schiff base complex supported on nano‐TiO2 was designed and synthesized as an effective heterogeneous nanocatalyst for organic reactions, and well characterized using various techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray analysis and thermogravimetric analysis. The catalytic efficiency of the complex was evaluated in selective oxidation of sulfide to sulfoxide by hydrogen peroxide as an oxidant under solvent‐free conditions at room temperature, which successfully resulted in high yield and high conversion of products. Effective factors including solvent type, oxidant and catalyst amount were also optimized. The catalyst shows outstanding reusability and could be impressively recovered for six consecutive cycles without significant change of its catalytic efficiency.  相似文献   
7.
Compound I from cytochrome P450 119 prepared by the photooxidation method involving peroxynitrite oxidation of the resting enzyme to Compound II followed by photooxidation to Compound I was compared to Compound I generated by m-chloroperoxybenzoic acid (MCPBA) oxidation of the resting enzyme. The two methods gave the same UV/Visible spectra, the same products from oxidations of lauric acid and palmitic acid and their (ω-2,ω-2,ω-3,ω-3)-tetradeuterated analogues, and the same kinetics for oxidations of lauric acid and caprylic acid. The experimental identities between the transients produced by the two methods leave no doubt that the same Compound I species is formed by the two methods.  相似文献   
8.
The relative rates of arylation of primary alkylamines with different Pd-NHC catalysts have been measured, as have the relative rates of arylation of the secondary aniline product in an attempt to understand the key ligand design features necessary to have high selectivity for the monoarylated amine product. As the substituents on the N-aryl ring of the NHC increase in size, selectivity for monoarylation increases and this is further enhanced by chlorinating the back of the NHC ring. Computations have been performed on the catalytic cycle of this transformation in order to understand the selectivity obtained with the different catalysts.  相似文献   
9.
The first-principles DFT calculations together with microkinetic analysis reveal the complex catalytic mechanism of low-content NO oxidation on CrO2(110) at room temperature. It quantitatively makes clear that CrO2(110) can exhibit considerable activity with the Mars-van-Krevelen mechanism preferred, and the nitrate species serves as the key poisoning species.  相似文献   
10.
We developed an environmentally friendly method for aerobic oxidation of alcohols using a commercially available, relatively benign bismuth salt as a catalyst. We found that the catalytic combination of BiBr3 with nitric acid is key for enhancing the reactivity. The reaction proceeds well under air, making the use of pure oxygen unnecessary. Each of the primary or secondary alcohols tested was oxidized to the corresponding aldehydes or ketones using this protocol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号